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In the past few years, knowledge bases have been widely used in plenty of Al-related re-
search and applications, such as information extraction, question answering systems, and
recommender systems. These knowledge bases are modelled as knowledge graphs (KGs)
to store human knowledge, and they can be integrated by knowledge base enrichment
algorithms for better knowledge fusion and inference. One typical way to consolidate
knowledge and enhance the quality of knowledge graphs is through entity alignment,
which aims to discover entities from different knowledge graphs that represent the same
real-world object. While recent years have witnessed considerable progress in the de-
velopment of entity alignment approaches, very few research has provided systematic
comparisons and analysis of the existing approaches through experimental studies and
empirical evaluations. Moreover, it has been overlooked by the current literature that
existing benchmark datasets oversimplify the real-world challenges of KG entity align-
ment. With that said, this research project strives to investigate three state-of-the-art
entity alignment approaches by summarising the related literature, reviewing the frame-
work of each approach, deriving datasets to mirror the real-world challenges, carrying
out a set of exploratory experiments, and suggesting potential research directions for

future work.
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Chapter 1

Introduction

Recent years have witnessed the rapid development of knowledge bases and related ap-
plications. Many knowledge bases, such as Freebase [3], DBpedia [4], YAGO [5], and
Wikidata [6], have been published during the past decades and are becoming essential
sources of knowledge for Al-related research and applications, such as question answer-
ing systems [7] and recommender systems [8]. These knowledge bases are modelled as
knowledge graphs (KGs) to store human knowledge as triples, which are generally in the

form of (subject entity, relationship,object entity) or (entity, attribute, value).

In practice, KGs are constructed for various purposes and applications. As a result, a
single KG is unlikely to have full coverage of different domains. In this case, KGs can be
complementary to each other, and they can be integrated for better knowledge inferences.
To enhance knowledge fusion, researchers have made considerable efforts throughout
the years on developing entity alignment approaches, which become an essential type of
knowledge base enrichment algorithms. Specifically, the goal of entity alignment is to

identify entities in different KGs that represent the same real-world object.

Generally, existing entity alignment approaches assume that equivalent entities in dif-
ferent KGs tend to have similar neighbourhood structures, based on which they employ
representation learning methods to project entities into low-dimensional vector spaces.
In this way, pair-wise similarity of entities from different KGs can be derived based
on the distance between them in the vector space, which is then used to predict and

determine the alignment of entities.

While numerous entity alignment approaches for knowledge graphs have been proposed
in recent years, very few studies carry out experiments to systematically compare, eval-
uate, and analyse different state-of-the-art approaches. More importantly, it has been

overlooked by a wide range of approaches that existing benchmark datasets oversimplify
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the challenges of entity alignment in the real world. For one thing, entities are densely
connected between KGs in current datasets, making it much easier for entity align-
ment approaches to achieve good performance. For another, in the existing datasets,
each entity in the source KG has exactly one counterpart in the target KG, which is a
very unrealistic scenario in real life as KGs are created for different purposes in different
domains. Based on the above observations, this research project aims to study the state-
of-the-art entity alignment approaches by comprehensively reviewing the algorithm and
framework of each approach, deriving datasets that are closer to the real-world setting,
conducting a series of exploratory experiments to discuss and analyse their strengths and
weaknesses, and proposing potential extensions to the current work as well as promising
research directions for future work. Given the context and time limit of this project,
three approaches, including MTransE [9], GCN-Align [1], and MuGNN]|2], are selected

and investigated, leaving room for further exploration in the future.

The rest of this report is organised as follows. Chapter 2 reviews and summarises related
literature regarding two subfields: knowledge graph embedding models and knowledge
graph entity alignment approaches. Chapter 3 defines the studied problem and provides
preliminaries of the three approaches investigated in this project. Chapter 4 details
the experiments and results and presents critical analysis and discussion. Chapter 5

concludes the project with future research directions.



Chapter 2

Review of Related Literature

In this chapter, we divide the related literature into two subfields: knowledge graph
embedding and knowledge graph entity alignment. We start by giving an overview of
the existing knowledge graph embedding models (2.1), followed by a review of knowl-
edge graph entity alignment approaches (2.2) in the current literature, including both

conventional approaches and embedding-based approaches.

2.1 Knowledge Graph Embedding

Existing KG embedding models can be generally divided into three categories: transla-
tional models, semantic matching models, and deep models. In this section, we briefly

review the representative work in each category.

Translational Models. TransE [10] is one of the most representative translational
models for knowledge graph embedding. It interprets a relationship vector as the trans-
lation from the subject entity vector to the object entity vector. TransE is a simple but
powerful method that has shown the great capability to model one-to-one relationships
and achieve promising results. However, it has been found that TransE has difficulty in
effectively modelling more complex relationships, such as one-to-many relationships and
many-to-many relationships [11]. To further improve TransE, researchers have proposed
a number of models based on TransE, including TransH [12], TransR [13], and TransD
[14]. Compared with TransE, these models embed entities and relationships into differ-
ent embedding spaces by using a distributed representation to separate the relationship
vector space from the entity vector space. In this way, the ability of the embedding

models to express complex relationships can be enhanced.
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Semantic Matching Models. Another important category of KG embedding models
is semantic matching models, which leverage similarity-based scoring functions to infer
relationship facts. RESCAL [15] and HolE [16] are two examples within this category,
which exploit tensor factorisation and represent relationships with matrices. DistMult
[17] simplifies RESCAL by forcing the relationship matrices to be diagonal matrices.
ComplEx [18] further extends DistMult with complex-valued embeddings in order to
model asymmetric relationships in a more effective way. SimplE [19] also restricts rela-
tionship embeddings to diagonal matrices, but it extends DistMult by associating each
entity with two separate embeddings and each relationship with two separate diagonal
matrices so that the model is fully expressive and can model asymmetric relationships

well.

Deep Models. Deep models refer to models that use deep learning techniques for KG
embedding. These models combine the input data with learnable parameters to discover
significant patterns. ConvE [20] is one of the first models that employ convolutional neu-
ral networks (CNNs), which uses 2D convolution over embeddings and multiple layers
of non-linear features to model knowledge graphs. Recently, graph convolutional net-
works (GCNs) have also shown promising performance in many studies [21-23]. As an
extension of GCNs, R-GCN [24] has been proposed by Schlichtkrull et al., which ap-
plies GCNs to deal with highly multi-relational data characteristics of knowledge graphs.
Apart from CNNs and GCNs, recurrent neural networks (RNNs) has also been consid-
ered and studied by researchers. However, basic RNNs suffer greatly from the limitation
that they do not explicitly handle the path alternation of entities and relationships.
RSN [25] is developed to tackle such issue, which effectively bridges the gaps between
entities based on a skipping mechanism and combines RNNs with residual learning to

better capture the relational dependencies within and between KGs.

2.2 Knowledge Graph Entity Alignment

Entity alignment between knowledge graphs has been an active research area for many
years. With its prevalence in various applications, there has been an explosion of interest
in developing entity alignment approaches to enhance knowledge fusion. This section
provides a review of related literature on knowledge graph entity alignment approaches,

including conventional approaches and embedding-based approaches.

Conventional Entity Alignment. Conventional approaches deal with entity align-
ment problem from two main perspectives, namely equivalence reasoning [26, 27] and
similarity computation [28-30]. Some recent work improves the alignment accuracy by

using statistical machine learning [31, 32] and crowdsourcing [33]. However, it is worth
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noting that conventional approaches largely rely on literal information of entities and
require massive collaborative efforts. Although they can achieve high alignment accu-
racy, it cannot be ignored that they suffer from extension inflexibility and high costs of

labour and time.

Embedding-based Entity Alignment. As mentioned in the previous section, recent
years have witnessed great advancements in the development of embedding models. Such
advancements motivate researchers to study and explore embedding-based entity align-
ment. Compared with conventional approaches, embedding-based approaches require

much less human involvement and can be scaled to large KGs more easily as a result.

Many existing approaches employ translational models (e.g., TransE [10]) for entity
alignment. Chen et al. propose MTransE, which adopts TransE to train knowledge
graphs in separated embedding space and develops an alignment model to construct
transitions between vector spaces [9]. IPTransE [34] encodes and unifies entities and
relations into a low-dimensional space before mapping the knowledge embeddings into
a joint semantic space and implementing an iterative method to improve its alignment
performance further. Similarly, BootEA [35] also iteratively adds the newly discovered
entity alignments to the training set during the optimisation process. Additionally, it
also employs an error correction mechanism to mitigate the impact of error accumula-
tion. Besides, some approaches, such as JAPE [36] and KDCoE [37], incorporate at-
tributes and description information into their algorithms in order to improve the entity
embeddings. Exploiting attribute values, Trisedya et al. propose an embedding-based
approach that integrates entity structure embedding with attribute character embedding

to improve the performance of entity alignment between two KGs [38].

Some recent approaches are developed based on graph neural networks (e.g., GCNs
[21]). For instance, Wang et al. present GCN-Align [1], which embeds entities from
each knowledge graph into a unified vector space and discovers entity alignment via
GCNs. Cao et al. introduce a Multi-channel Graph Neural Network model (MuGNN)
[2] to reconcile the structural differences between different KGs and make better use
of the seed alignment at the same time. HGCN [39], another GCN-based approach,
approximates relationship representations using a small set of aligned entities before
incorporating them into entities to learn representations for both entities and relation-
ships iteratively. To better explore and capture complex relationship information in
multi-relational knowledge graphs, Wu et al. develop RDGCN [11], which incorporates
relationship information into entity representations by allowing multiple rounds of in-
teractions between the primal entity graph and corresponding dual relation graph. It
further extends GCNs with highway gates so that neighbourhood structural information

can be integrated.



Chapter 3

Preliminaries

A review of related literature in Chapter 2 highlights a number of important work
in the field of knowledge graph entity alignment. However, given the context of this
research project, we select three of them, namely MTransE, GCN-Align, and MuGNN,
to investigate by implementing a series of experiments and analysing their performances.
Before presenting a detailed discussion and analysis of the experiments, we first provide
some preliminaries in this chapter. We start with the problem definition (3.1), which
is followed by the explanation of two mainstream KG embedding models (3.2) and the
three KG entity alignment approaches (3.3).

3.1 Problem Definition

Knowledge graphs store knowledge of real-world entities in triples. A KG consists of
both relationship triples and attribute triples. Relationship triples represent the rela-
tionship between entities in the form of (subject entity, relationship, object entity ), and
attribute triples represent attributes of entities in the form of (entity, attribute, value).
For instance, in Wikidata, (Albert_Finstein, influenced, Leo_Szilard) is a relationship
triple where influenced is the relationship between Albert Einstein and Leo Szilard, and
(Albert_Einstein, date of birth, 1879-03-14) is an attribute triple where date of birth is
an attribute of Albert Finstein and 1879-03-14 is the attribute value. Both relationship

triples and attribute triples contain essential information about the entities.

Formally, we represent a knowledge graph as G = (E, R, A,T,,T,), where E, R, and
A are sets of entities, relationships, and attributes, respectively; T;. and T, denote the
sets of relationship triples and attribute triples. Given two KGs G = (E, R, A, T;,T,)
and G' = (E', R/, A", T/, T)), the task of entity alignment can be defined as discovering
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entities in G and G’ that represent the same real-world object. In many cases, a set of
pre-aligned entities A5 = {(e,€’) € E x E'|e +» ¢’} and a set of pre-aligned relationships
A3 = {(r,r") € R x R'|r <> r'} with « representing equivalence, are known beforehand

as seed alignments and are used as training data.

3.2 Knowledge Graph Embedding Models

TransE [10] and GCN [21] are two mainstream models that are frequently used by various
entity alignment approaches to learn and generate the embeddings for entities. Here we

provide a brief description of these two models.

3.2.1 TransE

TranskE is a typical triple-based embedding model that captures the local semantics of re-
lationship triples and aims to preserve the structural information of entities. Specifically,
it models relationships as translations operating on the low-dimensional representations
of the entities. Given a relationship triple (s,r,0), TransE suggests that the embedding
of the object entity o should be close to the embedding of the subject entity s plus
the embedding of the relationship r, i.e., s + r =~ 0. Here bold-face letters denote the
corresponding vector representations. In this way, entities with similar neighbourhood
structures should have a closer representation in the embedding space. The energy of
the relationship triple is

¢(s,r,0) =||s+r — 0| (3.1)

where || - || is the L1-Norm or L2-Norm of vectors. TransE minimises the margin-based

loss function by a pre-defined margin to separate positive triples from negative triples.

3.2.2 GCN

The graph convolutional network (GCN) is a type of neural networks that is well suited
for modelling graph-structured data. It operates on graph data directly and generates
node-level outputs by encoding the information about the neighbourhood of nodes. Con-
cretely, the inputs of a GCN include feature vectors of each node in the knowledge graph
and an adjacency matrix describing the graph structure, based on which the GCN aims
to learn a function of the features on the input graph and produce a new feature matrix

as the output. A GCN model normally consists of multiple stacked GCN layers, and the
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typical propagation rule from the I** layer to the (I + 1) layer is
- 1 . 1
HEY = o <D2AD2H(’>W@> (3.2)

where o is the activation function such as Tanh(-) and ReLU(-); A = A + I with A
being the adjacency matrix that represents the structural information of the graph and
I being the identity matrix; D is the diagonal node degree matrix of A; w® is the
learnable weight matrix in the I** layer. H (+1) denotes a new feature matrix which is

the output from the It layer.

3.3 Knowledge Graph Entity Alignment Approaches

In this section, we present a detailed review of the algorithm and framework of MTransE
[9], GCN-Align [1], and MuGNN [2] in order to lay a solid foundation for the experiments

and analysis in the next chapter.

3.3.1 MTransE

MTransE is a translation-based approach originally designed for multilingual entity
alignment. The idea of MTransE can be illustrated by Figure 3.1. It first adopts TransE
[10] to compute the embeddings for each KG. Then, it provides transitions for each em-
bedding vector to its counterparts in other spaces, while preserving the key properties

of each knowledge graph.

2 |
i - i
' 1
KG1 1 A Embedding P
: Y TransE Space
' X
: i

| Transitions

A Embedding  [JEe
|

KGz 1

FIGURE 3.1: MTransE

MTransE consists of two components, namely the knowledge model and the alignment
model. Specifically, the knowledge model encodes entities and relationships of each

knowledge graph in a separated embedding space by using TransE. As for the alignment
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model, it aims to learn cross-lingual transitions from a set of pre-aligned relationship

triples. The loss function of the alignment model is

La= > So(T,, T (3.3)
(T T{)ES(Li,Ly)

where (T}, T;) denotes an aligned relationship triple pair and §(L;, L;) denotes the align-
ment set that contains the pre-aligned relationship triple pairs between language L; and
language L;. MTransE considers three different techniques to compute the alignment
score Sq (T}, T)), including distance-based axis calibration, translation vectors, and linear
transformations. Out of these three techniques, deducing linear transformations between
the embedding spaces achieves the best performance and the corresponding alignment
score is

Sa = || M58 — &'|| + [| M0 — o] (3-4)
with M7, as the linear transformation on entity vectors from L; to L;.

Combining the knowledge model and the alignment model, MTransE minimises the
overall loss function, which is the weighted sum of the two models’ loss. It is noteworthy
that negative sampling is not employed, since the authors did not find any noticeable

impact on the results of their experiments.

3.3.2 GCN-Align

GCN-Align is one of the first GNN-based approaches for knowledge graph alignment
problem, and its framework is presented in Figure 3.2. Given two KGs and a set of
pre-aligned entity pairs, it trains graph convolutional neural networks (GCNs) to embed
entities from the two KGs into a unified vector space and identify aligned entities based

on the distance between them.

ey ‘I () i
E : G E
KGr1 | i C :
¢ @ N E
L L ./ \
\ (f(‘ei-ej) =|| e; —e; |J
ey T ‘I ‘ () 1
E /|G E
KGz | :v C :
¢ o (N
[ ’ / N

FIGURE 3.2: GCN-Align [1]
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One of the key contributions of GCN-Align is that it effectively combines entity relations
and entity attribute values to improve the results of KG alignment. To exploit both
structure and attribute information of entities, GCN-Align assigns two feature vectors,
including a structure vector and an attribute vector, to each entity in the GCN layers.

Then, the convolution computation is redefined as:

D=

[HOD, HIY) = ReLU(D ?AD [HOWO; HOW D)) (3.5)

where H gl) and H ((ll) are structure and attribute feature matrices of all entities; ng)

and W((ll) are weight matrices for structure features and attribute features respectively;
and [;] denotes the concatenation of two matrices. Considering that KGs are directed
graphs with entities connected by different types of relations, it designs a special way of
computing A instead of directly using the adjacency matrix. Let a;; € A indicate the
extent of alignment information propagating from the i** entity e; to the j** entity e;

in knowledge graph G. Then,

a;j = Z ifun(r) + Z fun(r) (3.6)

<e;,rej>€G <ej,r,e;>€G
where fun(r) and ifun(r) are two measures proposed by the authors, namely func-
tionality and inverse functionality. Concretely, fun(r) and ifun(r) are the number of
subject entities and object entities of relationship r divided by the number of triples of

r, respectively.

As for entity alignments between KGs, they are predicted based on the distances between
the entities in the GCN representation space, where the distances are expected to be
small for equivalent entity pairs and large for non-equivalent pairs. A set of pre-aligned
entities is used as training data to embed equivalent entities as close as possible in
the representation space. The model is trained by minimising the margin-based loss

functions for structure embedding and attribute embedding separately.

3.3.3 MuGNN

Although GCN-Align achieves decent performance in entity alignment tasks, Cao et
al. point out the it fails to consider the structural differences between the KGs [2]. To
reconcile the structural heterogeneity of KGs and make better use of the seed alignments,
they propose another GNN-based approach, MuGNN. As is shown in Figure 3.3, KG
completion and multi-channel graph neural network are two key steps of the MuGNN

framework.
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KG Completion Muiti-channel Graph Neural Network

FIGURE 3.3: MuGNN |[2]

KG completion aims to reconcile the structural differences between KGs through rule
inference and transfer. It employs a popular rule mining system, AMIE+ [40], to induce
rules from each KG before transferring them between KGs based on the assumption
that knowledge can be generalised into different KGs regardless of domains. The rule
sets are then grounded on the corresponding KG for consistent completion. To better
illustrate the idea behind KG completion, here is an example. As we can see in Figure
3.4, the red dashed lines and ellipse in KG» illustrates the structural differences be-
tween the two KGs, making K G5 more informative than K G;. After obtaining the rule
(z, province,y) A (y, dialect, z) = (z,dialect, z) from KG9, we can transfer it to KGy
based on the aligned relationships: province and dialect. In this case, a new relationship

triple (Jilin City, dialect, Northeastern Mandarin) can be derived.

" Northeastern . o

Mgndaimmmareqﬁ - Jilin -
__________ G o,
R A
(#R1ti&(Northeastern™, I
N Mandarin) " Paeet=CE & (Jilin) O
T S T,
O"i/sﬁ d\‘ﬁ o’b’

;\g\ \

LU Fel): -F SRR N
T Mayor - ). Nearty - >{CPBNGCHUN) /

FIGURE 3.4: Tllustration of KG Completion in MuGNN (dashed lines and ellipse in red
denote the additional information in KGs) [2]

The main objective of multi-channel graph neural network is to encode each KG via
multiple channels. Specifically, it is comprised of three components, including relation
weighting, multi-channel GNN encoder, and align model. Relation weighting is designed

to generate weighted connectivity matrix which will be the input of GNN encoder. The
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model considers two types of structural differences among different KGs: the missing
relationships due to the incompleteness nature of KGs and the exclusive entities due
to different construction demands of applications. These two types of differences are
reconciled by using two channels of GNN encoder for each KG. As a result, two adjacency
matrices are generated for each KG: A; based on KG self-attention and As based on
cross-KG attention. Following the graph attention networks [41], KG self-attention aims

to make better use of the seed alignments with a;; in Ay defined as

exp(cij)
Zek ENei Ue; exp(cik)

a;j = softmax(cij) = (3.7)
where e € N, U {e;} refers to neighbours of e; with self-loop and c¢;; refers to the
attention coefficient. Regarding cross-KG completion, it aims to capture the common

subgraph of the two KGs and prune exclusive entities with a;; in Az defined as

aij = reg}'r%}éR/ 1((e;s, 7 €5) € Tp)sim(r,r") (3.8)
where 1(-) is 1 if holds true, else 0; sim(r,r’) is the inner product similarity between
relationship types. Given A; and Ag, the multi-channel GNN encoder is constructed

by stacking multiple GCN encoders:
MultiGNN (H'; Ay, Ag) = Pooling(H\™, HY™) (3.9)

where H li+1 denotes the node representations in the (I 4+ 1)'* layer and " channel;
Pooling(-) refers to the average pooling techniques. Then, the align model embeds the
two KGs into a unified vector space using pre-aligned entities and relationships. Since
new triples are added during the rule grounding process, triple loss is also introduced
to hold the grounded rules as valid in the unified vector space. Hence, the model is
optimised using the margin-based loss function that consists of both alignment loss and

triple loss.



Chapter 4

Experiments and Analysis

In Chapter 4, we study and compare MTransE, GCN-Align, and MuGNN through four
exploratory experiments on two datasets. We begin by providing an overview of the
experiment settings and datasets used (4.1) before moving on to the four experiments,
focusing on the impact of seed alignments (4.2), efficiency analysis (4.3), the impact of
attribute triples (4.4), and the impact of entity alignment on the internal semantics of
each KG (4.5), respectively. We end the chapter with a summary of the results and

findings from the experiments (4.6).

4.1 Overview

We start with a brief overview of the experiment settings. We use different sizes of
seed alignments as training data in Experiment 1 to compare the three approaches’
performances and investigate the impact of seed alignments. The maximum memory
usage of each approach is reported for efficiency analysis in the second experiment. In
Experiment 3, we compare the three approaches with and without attribute triples. Ad-
ditionally, different ways of using attribute triples are explored and discussed. The last
experiment is about the effect of entity alignment on each KG’s internal semantic, which
is measured by link prediction for translation-based approaches and node classification
for GNN-based approaches. For each experiment, we explain how it is designed and

executed and present the result with a detailed analysis.

As for the datasets used in the experiments, the entity alignment approaches are evalu-
ated on three publicly available knowledge graphs, namely DBpedia (DBP) [4], YAGO
[5], and Wikidata (WD) [6]. Specifically, we run the approaches to align entities from

13
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TABLE 4.1: Dataset Statistics

Dataset Entities Attributes Relationships Attl.‘lbute Relat-l onship
Triples Triples
DBP 58,858 85 126 173,520 87,676
DBP-YAGO YAGO | 60,228 38 53 186,328 66,546
DBP 84,911 257 288 221,591 203,502
DBP-WD WD 86,116 501 202 223,232 198,797

DBP with the ones from YAGO and WD, respectively. Then, the aligned entity pairs dis-
covered by the approaches are compared with the ground truth datasets ', DBP-YAGO
and DBP-WD. DBP-YAGO contains 15,000 aligned entities, 43 aligned relationships,
and 29 aligned attributes; DBP-WD contains 50,000 aligned entities, 49 aligned rela-
tionships, and 28 aligned attributes. The statistics of the two datasets are included in
Table 4.1. Tt is worth noting that to better mirror the real-world challenges and difficul-
ties regarding entity alignment between KGs, these two datasets are derived from the
existing benchmark datasets, DWY100K(DBP-YAGO) and DWY100K(DBP-WD) [35]
respectively, by removing 30% of the aligned entities from the knowledge graphs. We do
not directly use the existing benchmark datasets because the existing ones oversimplify
the entity alignment challenges under real-life scenario. For instance, in DWY100K,
entities are very densely connected to each other, and for every entity in the source KG,
we can always find exactly one counterpart in the target KG [42]. In this case, an entity
alignment approach can achieve decent performance by simply aligning each entity in
the source KG with the most similar one in the target KG. Further, in the real world,
KGs are created for a wide range of purposes and problem domains. As a result, they
contain entities that other KGs do not possess. By using datasets that are closer to
real-world settings, we aim to better compare and analyse each approach’s strengths

and weaknesses.

4.2 Experiment 1: Impact of Seed Alignments

Most of the existing approaches use 30% of the seed alignments as training data and
leave the rest 70% for testing. To have a better understanding of the three approaches
and their sensitivity to the usage of seed alignments, we compare their performance

using different sizes of seed alignments in Experiment 1.

"http://downloads.dbpedia.org/2016-10/links/
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4.2.1 Method

To investigate the impact of seed alignments on the three approaches, we use different
sizes of seed alignments as training data. Specifically, we gradually increase the size of
seed alignments from 10% to 50%. As for the evaluation metrics, by convention, the
performance of the entity alignment approaches is evaluated by Hits@N, which refers to
the proportion of correctly aligned entities ranked in the top N predictions. We report

Hits@1 and Hits@10 on each dataset. Higher Hits@N indicates better performance.

4.2.2 Results and Discussion

Figure 4.1 shows the result of Experiment 1. As we can see, all three approaches per-
form better as the size of seed alignments increases, which is in line with our intuition,
and a slower growth trend in their performances can be observed with 40% and 50% of
seed alignments. MuGNN consistently outperforms the other two approaches on both
datasets. Compared with the other GNN-based approach, GCN-Align, MuGNN explic-
itly completes knowledge graphs by mining, inferring, and transferring rules between the
two KGs to alleviate the negative impact of the heterogeneity of KG structures, which
has not been considered by GCN-Align. Additionally, although both GCN-Align and
MuGNN employ graph convolutional networks to encode KGs, MuGNN designs and
utilises multi-channel GNN encoders for different types of structural differences to make
the most of seed alignments. Nonetheless, one advantage of GCN-Align over MuGNN is
that it harnesses both relationship triples and attribute triples, which proves to be an ef-
fective way to improve its performance. Apart from that, as rule inference and transfer is
the key step in the MuGNN framework, proper rule mining is essential. However, it can
be easily overlooked that rule mining might not work well on domain-specific datasets
where there are minimal number and types of relationships, and the entity alignment
performance might be compromised in this case. LinkedGeoData [43] and Geonames 2
are two examples of such datasets, which contain mainly geographical data with limited
number of location-related relationships. Moreover, while GCN-Align only needs a set
of pre-aligned entities as the training data, MuGNN requires a set of pre-aligned entities
and relationships. This indicates that the rule transfer might fail to work when there is
no aligned-relationship available, and the size of the detected rules will be much smaller
in KGs where the structure of KGs is sparser. It is also noteworthy that the inferred
rules do not hold in all cases. Thus, the confidence and quality of the rule grounding
process is of great importance to the overall performance of MuGNN, which has not

been carefully considered and discussed by the authors.

http://www.geonames.org/ontology/
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On the other hand, the performance of MTransE is significantly worse than the other
two approaches, which can be analysed from several aspects. One important reason is
that MTransE embeds KGs using TransE, which is constrained by the assumption that
the embedding of the object entity should be close to the embedding of the subject en-
tity plus the embedding of the relationship. This is a strong assumption that can make
it inefficient to deal with the complex KG structures and insufficient to generate high-
quality entity embeddings. Also, it models the structure of KGs in separate embedding
spaces, which might result in more information loss during the transitions between the
embedding spaces. Besides, as mentioned in the previous chapter, MTransE removes
negative sampling during the training process, which is likely to cause overfitting as em-
beddings are trained only with positive samples. Since it jointly optimises the knowledge
model and alignment model, the overall loss function has to be balanced very carefully,
increasing the difficulty of generating promising results. Furthermore, compared with
GCN-Align and MuGNN, MTransE neither exploits attribute triples nor induces rules

from relationship triples for KG completion, which also explains its relatively inferior

results.
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FI1GURE 4.1: Experiment 1 Result: Impact of Seed Alignments

4.3 Experiment 2: Efficiency Analysis

To provide a more comprehensive evaluation, Experiment 2 aims to compare and analyse
the efficiency of the three approaches by reporting their maximum memory usage on each

dataset.
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TABLE 4.2: Experiment 2 Result: Maximum Memory Usage

Approach MTransE GOCN-Align MuGNN
Datasot DBP-YAGO 0.41 GB 1.563 GB 17.82 GB
DBP-WD 0.50 GB 10.63 GB  34.00 GB

4.3.1 Method

All three approaches split 30% of the entity seed alignments as training data leaving
the rest for testing in the original papers. In this experiment, we hereby report the
maximum memory usage of the approaches on each dataset using 30% entity alignments
for training. We admit that different parameter settings, such as the learning rate
and the number of epochs, might impact the memory usage of different approaches.
Nevertheless, the main objective of this experiment is to present an overview of their

efficiency by adopting the parameter settings reported in their original papers.

4.3.2 Results and Discussion

The result of Experiment 2 is listed in Table 4.2. As we can see from the results, due to
the more straightforward design of algorithms and more lightweight model complexity,
MTransE has the least maximum memory usage among the three approaches, followed by
GCN-Align. However, as discussed in the previous section, the performance of MTransE
is significantly worse than the other two approaches, especially on the DBP-YAGO
dataset. On the other hand, although MuGNN outperforms the other two approaches
in Experiment 1, Table 4.2 shows that it requires much more memory, especially on larger
datasets like DBP-WD. Although running MuGNN on GPU is an option provided by
the authors in their original code, it is worth mentioning that it cannot work in practice
due to the memory limitation and all experiments on MuGNN in this project have been
run on CPU as a result. Furthermore, along with the large memory usage, the time
cost of running experiments on MUGNN is also very high. For instance, MUGNN took
16 hours to generate results on the DBP-WD dataset, whereas GCN-Align only took 1
hour. Therefore, compared with MuGNN and MTransE, GCN-Align can be an efficient
and effective candidate to deal with large scale datasets. Last but not least, though only
three approaches are investigated in this project, the result of Experiment 2 still implies
that having high efficiency on large-scale datasets while being able to achieve promising

performance can be a challenge for the state-of-the-art approaches.
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4.4 Experiment 3: Impact of Attribute Triples

Experiment 3 is designed as an exploratory experiment to explore and compare the effect

of attribute triples on the performance of each approach.

4.4.1 Method

We compare the three approaches with and without attribute triples. Given that only
GCN-Align takes attribute triples into consideration in its framework whereas the other
two approaches are based on relationship triples only, here is how we design the exper-
iment. For MTranskE and MuGNN, which originally only use relationship triples, we
take a simple exploitation method to treat the attribute triples as relationship triples.
For GCN-Align, which originally exploits attribute triples, we report the result of the
structure-only variant of GCN-Align, which only uses relationship triples to perform
structure embedding. Moreover, inspired by JAPE [36], for GCN-Align, we carry out an
additional experiment as an extension to compare two ways of using attribute triples:
one is using the original value of attributes, and the other is using attribute types by
categorising the attribute values into 4 data types, including String, Integer, Double,
and Date. Similar to Experiment 1, we report Hits@1 and Hits@10 on each dataset as

the evaluation metrics.

4.4.2 Results and Discussion

The results of Experiment 3 are shown in Figure 4.2 and Figure 4.3 with details included
in Table 4.3. Figure 4.2 indicates that considering attribute information can be a useful
way to improve the results of entity alignment in most cases. We start with a discussion
about the two relationship-based approaches, MTransEE and MuGNN. As displayed in
Figure 4.2, a significant improvement in the performance of both approaches can be ob-
served on the DBP-YAGO dataset, where there is limited number of relationship triples.
This suggests that for approaches that only use relationship triples, a simple exploita-
tion method like treating attribute triples as relationship triples can be considered as
a way to enhance the overall performance when only a small number of relationship
triples are available. However, when we look at the result on the DBP-WD dataset,
the two approaches perform differently. While there is a relatively smaller improvement
in MuGNN'’s performance, the performance of MTransE is compromised with attribute
triples treated as relationship triples. For one thing, as the KG structures become more
complex and possess more relationship and attribute triples, TransE-based approaches

are prone to learn very similar embeddings for different entities [12, 13], resulting in the
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TABLE 4.3: Experiment 3 Result: Impact of Attribute Triples

Approach DBP-YAGO DBP-WD

Hits@l Hits@10 | Hits@l Hits@10
MTransE (w/o Attr) 0.07 0.81 8.69 27.15
MTransE (w/ Attr) 1.20 3.15 7.86 20.57
GCN-Align (w/o Attr) 18.74 4711 | 21.29 42.33
GCN-Align (w/ Attr Types) 19.66 47.93 21.57 42.81
GCN-Align (w/ Attr Values) 22.50 51.37 22.59 45.07
MuGNN (w/o Attr) 27.20 64.80 |  23.41 53.51
MuGNN (w/ Attr) 60.46 78.19 | 33.05 55.41

deficiency in generating embeddings of high quality. For another, as discussed previ-
ously, MTransE does not employ the negative sampling technique that has been widely
used in a number of translation-based approaches and proved to be very valuable for
structure embeddings [35, 36, 44]. Only using positive samples in the training process
makes it prone to overfitting. This is more likely to happen when the method to exploit
of attribute triples is designed to be very simple. On the other hand, although simply
treating attribute triples as relationship triples can further improve MuGNN'’s perfor-
mance on both datasets, it is worth noting that due to high computational costs and
model complexity, it might take even longer to complete the experiments. For instance,
it took six days to generate the results on the DBP-WD dataset, which, again, reflects

its efficiency issue.
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FIGURE 4.2: Experiment 3 Result: Impact of Attribute Triples

Regarding GCN-Align, which originally considers attribute triples in its algorithm, we
compare three variants of the approach: (1) GCN-Align without attribute triples, (2)
GCN-Align using attribute values, and (3) GCN-Align using attribute types. The re-
sult can be found in Figure 4.3. Overall, it validates the usefulness of the attribute
information as using either attribute values or types can achieve a better performance
than only performing structure embedding. When we have a closer look at the result

and compare the two ways of using attribute triples, GCN-Align using attribute types
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has a slightly better performance than GCN-Align with structure embedding only. By
contrast, GCN-Align using attribute values outperforms the other two variants, which
is also in accord with our intuition as it provides more attributional information than
using attribute types. However, it has to be admitted that exploiting attribute triples

by using attribute values requires a much larger vocabulary.
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F1GURE 4.3: Experiment 3 Result: Comparison between Using Attribute Values and
Attribute Types on GCN-Align

4.5 Experiment 4: Impact of Entity Alignment on the In-
ternal Semantics of Each Knowledge Graph

To further evaluate and compare the three approaches, Experiment 4 aims to investigate
and analyse how each approach’s alignment model affects the learning results of KG

embedding, i.e., the effect of entity alignment on KGs internal semantics.

4.5.1 Method

The effect of entity alignment on the internal semantics of each KG can be measured
by downstream applications. In this experiment, we follow two standard tasks: link
prediction for translation-based approaches [10] and node classification for GNN-based
approaches [21]. Link prediction is to predict the missing object entity given the subject
entity and the relationship. The evaluation protocol for link prediction can be explained
in two steps. In the first step, we corrupt each relationship triple by replacing its
object entity with all the other possible entities in the dataset. In the second step,
the corrupted triples are ranked in ascending order based on the plausibility score (s +

r — 0). In this case, valid triples are expected to have smaller plausibility scores than
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TABLE 4.4: Experiment 4 Result: Impact of Entity Alignment on KGs Internal Se-

mantic
MTransE GCN-Align MuGNN
Approach Link Prediction Node Classification Node Classification
(Hits@10) (Precision) (Precision)
Dataset DBP-YAGO 98.03 78.12 43.75
DBP-WD 84.23 66.87 51.14

invalid ones. Following the convention, we use Hits@10 as the evaluation metric for
the link prediction task. As for node classification, it aims to classify the nodes and
determine their labels based on the labelled nodes in their neighbourhood. Under the
current experiment setting, it means given the embedding of an entity, we train a simple
classifier to predict the corresponding entity type. Specifically, we employ a support
vector classifier and evaluate it using two-fold cross-validation. We report the percentage

of correctly classified entities for the node classification task.

4.5.2 Results and Discussion

The result of Experiment 4 is included in Table 4.4. Ideally, entity alignment approaches
are expected to achieve good alignment performance while being able to preserve the
internal representation of KGs. Nonetheless, it is understandable that better perfor-
mances in entity alignment might compromise the internal semantics of each KG. This
is also indicated by the result of this experiment. Specifically, compared with MTransE
and GCN-Align, MuGNN is more alignment-oriented, which is clearly reflected by the
idea and framework behind the approach. As discussed previously, one of the critical
objectives of MuGNN is to reconcile the structural differences between KGs. It explicitly
completes KGs through rule inference and transfer and prunes exclusive entities through
specially designed relation weighting schemes. As a result, new triples are added, and
the structure of each KG is changed, which explains its relatively inferior result in this
experiment. On the other hand, MTransE strikingly outperforms the other two ap-
proaches in Experiment 4, which is in accord with one of the original intentions stated
by the authors. That is, to preserve the essential properties and characterisation of
each KG well. However, given its performance in Experiment 1, it also implies that,
in MTransE, the internal representation of each KG is preserved ”too well” to address
the entity alignment problem between KGs effectively. This might be caused by an im-
balance between the loss of the knowledge model and the alignment model during the
joint optimisation process. In general, the result of Experiment 4 reveals that designing
a proper alignment model that can achieve good performance in entity alignment and
preserve the internal semantics of each KG at the same time remains a challenge for

future work.
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TABLE 4.5: Comparison of Three Approaches

MTransE GCN-Align MuGNN
Embedding Model Translation-based GNN-based GNN-based
Alignment Model Transition Margin-based Margin-based
Usage oi. Attribute X v X
Triples
Distance Measure Euclidean Distance Manhattan Distance Cosine Similarity
1) Outperformance over the other
Pros 1) Simple and §c§lable 1) Scalé'xble anq effective ' ;‘)VOSZriifui?;hhc;erogeneity of KGs
2) Key properties of each 2) Attribute triples exploited .
KG preserved to improve accuracy carefully considered
N 3)Further improvement with simple
exploitation of attribute triples
1) Significant degradation in
performance under real-life 1) Structure heterogeneity of 1) Less scalable and efficient
Cons challenges KGs not carefully considered 2) Degradation in performance
2) Prone to overfitting 2) A very large vocabulary when there are no/few rules
3) Limited by the TransE-based required 3) Pre-aligned relationships required
embedding model

4.6 Comparison and Summary

In this section, we summarise the key findings in the experiments and provide an overall

comparison of the three entity alignment approaches (see Table 4.5).

Previous literature shows that MTransE is a simple and scalable approach that works
well on most existing benchmark datasets. However, we observe a significant degradation
in its performance in our experiments. The limitations of TransE-based embedding
models and the absence of the negative sampling technique are two important reasons.
There is no doubt that TransE is one of the most frequently used KG embedding models
in many existing entity alignment approaches. Yet, as discussed in Chapter 2, there
are many unexplored KG embedding models for the entity alignment problem, such as
TransH [12], HolE [16], and ConvE [20]. This highlights a potential research direction

that is worth further exploration.

Compared with MTransE, GNN-based approaches achieve better and more robust per-
formance. Specificallyy, MuGNN outperforms the other two approaches by employing
rule inference and transfer and using multi-channel GNN encoder to reconcile structural
differences between KGs for better alignment performance. Although it originally does
not consider attribute triples, a simple exploitation method by treating attribute triples
as relationship triples further improves its performance. This not only validates the
usefulness of attribute triples, but also points out a direction for future work to propose
approaches that effectively leverage attribute triples. Nevertheless, the limitations of
MuGNN cannot be ignored. For one thing, pre-aligned relationships between the KGs
required by MuGNN might not always be available. Additionally, the performance of

the approach greatly relies on the quality of the rule mining, inference, and transfer
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process, which requires careful consideration and further investigation. For another,
due to its high computational costs and model complexity, efficiency analysis reveals its
scalability issue on datasets of a large scale. In this case, GCN-Align can be an efficient
and effective candidate for entity alignment on larger datasets. With that said, how to
develop algorithms that can efficiently achieve competitive alignment performance re-
mains a research question to be answered by future work. Furthermore, the result of the
experiment on how the alignment model of each approach affects the internal semantics
of KGs provides motivations for future studies to design and propose proper alignment
method that can preserve the internal representation of each KG while having promising

alignment performance.



Chapter 5

Conclusion and Future Directions

In Chapter 5, we draw conclusions (5.1) and propose future directions (5.2).

5.1 Conclusion

Entity alignment aims to identify equivalent entities from different knowledge graphs,
which is a prevalent approach to integrating knowledge from different KGs for better
knowledge fusion and inferences. While entity alignment for knowledge graphs has
seen vigorous development and become an active research area in recent years, there
have been very few experimental studies to explore, compare, analyse, and discuss the
state-of-the-art approaches. With such observations, this project provides an empirical
evaluation of three state-of-the-art entity alignment approaches by thoroughly reviewing
the algorithm and framework of each approach, carrying out exploratory experiments
to compare their strengths and weaknesses, and presenting evidence-based analysis and

discussions in detail.

5.2 Future Directions

Based on the experimental results and findings, we propose several future research di-
rections in this section, including both the extensions to the current experimental study

and suggestions for future work on entity alignment algorithms.

24
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5.2.1 Extensions to the Current Experimental Study

Variety of State-of-the-Art Algorithms. Given the current research project’s con-
text and time limit, only three entity alignment algorithms are investigated and dis-
cussed. However, a review of related literature in Chapter 2 shows considerable efforts
in this research field. Thus, it is of significance to include a wider variety of state-of-the-
art algorithms and categorise them based on their core techniques and characteristics so

that the comparison and analysis would be more comprehensive and meaningful.

Similarity on the Top K Alignment. It would be interesting to compute the vector
similarity and see the similarity on the top K alignments to analyse the similarity mea-
sure performed by different methods. Additionally, the confidence of the alignments can

be compared via similarity@1 for further analysis.

Attribute Semantics. For methods that exploit attribute triples, it is also worth
investigating and comparing how each method leverages attribute triples. Specifically, we
could compute the semantic similarity of the attribute embedding and plot the attributes
in a 2D plane to show whether the same attributes, such as person name and date of

birth, are clustered together or not.

5.2.2 Suggestions for Future Work on Entity Alignment

Unsupervised Entity Alignment. As discussed in Chapter 4, seed alignments are
required as supervision by most existing entity alignment approaches. However, it can be
difficult and costly to meet this requirement in the real world. Moreover, it is vulnerable
to the quality of the selected entity pairs. Therefore, one important and meaningful
research direction is to study and develop unsupervised entity alignment approaches.
Leveraging supplementary resources to distil distant supervision such as pre-trained word
embedding can be a possible solution [45]. In addition, recent research by Conneau et
al. on unsupervised cross-lingual word alignment highlights that orthogonal Procrustes
[46] and adversarial training [47] are also worth exploring [48]. Besides, active learning
[49] and abductive learning [50] can be two potential ways to reduce the cost and burden

of data labelling.

Scalability of Entity Alignment. The experiments and efficiency analysis in the
previous chapter reveal that training and testing the existing methods on larger datasets
require much more memory and time, which climb polynomially along with the increasing
number of entities. In this case, it is very challenging and costly for embedding-based
methods to run on very large knowledge graphs. Hence, another opportunity for future

work is to explore ways to improve the scalability of entity alignment approaches. Some
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hashing techniques, such as Locality-Sensitive Hashing [51] and Information Network
Hashing based on Matrix Factorization (INH-MF) [52], might be useful to alleviate the

scalability issue.

Multi-modal Entity Alignment. Information associated with each entity can be in
various modalities, including texts, images, or even videos, which potentially add another
dimension to the development of entity alignment approaches [53, 54]. Due to the fact
that only very few studies have attempted to describe and integrate the multi-modal
data for entity alignment problems, how to effectively and efficiently exploit multi-modal

knowledge is another research question that remains to be answered in the future.

Entity Alignment in the Real World. As discussed previously, current entity align-
ment approaches work well under the assumption that every entity in one knowledge
graph has a counterpart in another knowledge graph. However, this is not the real-world
setting since knowledge graphs are created for different purposes and unmatchable en-
tities always exist. Furthermore, only a few entities are densely connected to others
in the real-life knowledge graphs, whereas the rest have a very sparse neighbourhood
structure. This has also been oversimplified or even neglected by current literature.
Therefore, developing entity alignment algorithms suitable for real-world setting is an-
other challenge for future work. Using more advanced graph neural networks, leveraging
additional features such as taxonomies, and extracting information from the open Web

to enrich entities are potential directions to investigate [21, 24, 55].
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