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In the past few years, knowledge bases have been widely used in plenty of AI-related re-

search and applications, such as information extraction, question answering systems, and

recommender systems. These knowledge bases are modelled as knowledge graphs (KGs)

to store human knowledge, and they can be integrated by knowledge base enrichment

algorithms for better knowledge fusion and inference. One typical way to consolidate

knowledge and enhance the quality of knowledge graphs is through entity alignment,

which aims to discover entities from di↵erent knowledge graphs that represent the same

real-world object. While recent years have witnessed considerable progress in the de-

velopment of entity alignment approaches, very few research has provided systematic

comparisons and analysis of the existing approaches through experimental studies and

empirical evaluations. Moreover, it has been overlooked by the current literature that

existing benchmark datasets oversimplify the real-world challenges of KG entity align-

ment. With that said, this research project strives to investigate three state-of-the-art

entity alignment approaches by summarising the related literature, reviewing the frame-

work of each approach, deriving datasets to mirror the real-world challenges, carrying

out a set of exploratory experiments, and suggesting potential research directions for

future work.
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Chapter 1

Introduction

Recent years have witnessed the rapid development of knowledge bases and related ap-

plications. Many knowledge bases, such as Freebase [3], DBpedia [4], YAGO [5], and

Wikidata [6], have been published during the past decades and are becoming essential

sources of knowledge for AI-related research and applications, such as question answer-

ing systems [7] and recommender systems [8]. These knowledge bases are modelled as

knowledge graphs (KGs) to store human knowledge as triples, which are generally in the

form of (subject entity, relationship, object entity) or (entity, attribute, value).

In practice, KGs are constructed for various purposes and applications. As a result, a

single KG is unlikely to have full coverage of di↵erent domains. In this case, KGs can be

complementary to each other, and they can be integrated for better knowledge inferences.

To enhance knowledge fusion, researchers have made considerable e↵orts throughout

the years on developing entity alignment approaches, which become an essential type of

knowledge base enrichment algorithms. Specifically, the goal of entity alignment is to

identify entities in di↵erent KGs that represent the same real-world object.

Generally, existing entity alignment approaches assume that equivalent entities in dif-

ferent KGs tend to have similar neighbourhood structures, based on which they employ

representation learning methods to project entities into low-dimensional vector spaces.

In this way, pair-wise similarity of entities from di↵erent KGs can be derived based

on the distance between them in the vector space, which is then used to predict and

determine the alignment of entities.

While numerous entity alignment approaches for knowledge graphs have been proposed

in recent years, very few studies carry out experiments to systematically compare, eval-

uate, and analyse di↵erent state-of-the-art approaches. More importantly, it has been

overlooked by a wide range of approaches that existing benchmark datasets oversimplify

1



Chapter 1 Introduction 2

the challenges of entity alignment in the real world. For one thing, entities are densely

connected between KGs in current datasets, making it much easier for entity align-

ment approaches to achieve good performance. For another, in the existing datasets,

each entity in the source KG has exactly one counterpart in the target KG, which is a

very unrealistic scenario in real life as KGs are created for di↵erent purposes in di↵erent

domains. Based on the above observations, this research project aims to study the state-

of-the-art entity alignment approaches by comprehensively reviewing the algorithm and

framework of each approach, deriving datasets that are closer to the real-world setting,

conducting a series of exploratory experiments to discuss and analyse their strengths and

weaknesses, and proposing potential extensions to the current work as well as promising

research directions for future work. Given the context and time limit of this project,

three approaches, including MTransE [9], GCN-Align [1], and MuGNN[2], are selected

and investigated, leaving room for further exploration in the future.

The rest of this report is organised as follows. Chapter 2 reviews and summarises related

literature regarding two subfields: knowledge graph embedding models and knowledge

graph entity alignment approaches. Chapter 3 defines the studied problem and provides

preliminaries of the three approaches investigated in this project. Chapter 4 details

the experiments and results and presents critical analysis and discussion. Chapter 5

concludes the project with future research directions.



Chapter 2

Review of Related Literature

In this chapter, we divide the related literature into two subfields: knowledge graph

embedding and knowledge graph entity alignment. We start by giving an overview of

the existing knowledge graph embedding models (2.1), followed by a review of knowl-

edge graph entity alignment approaches (2.2) in the current literature, including both

conventional approaches and embedding-based approaches.

2.1 Knowledge Graph Embedding

Existing KG embedding models can be generally divided into three categories: transla-

tional models, semantic matching models, and deep models. In this section, we briefly

review the representative work in each category.

Translational Models. TransE [10] is one of the most representative translational

models for knowledge graph embedding. It interprets a relationship vector as the trans-

lation from the subject entity vector to the object entity vector. TransE is a simple but

powerful method that has shown the great capability to model one-to-one relationships

and achieve promising results. However, it has been found that TransE has di�culty in

e↵ectively modelling more complex relationships, such as one-to-many relationships and

many-to-many relationships [11]. To further improve TransE, researchers have proposed

a number of models based on TransE, including TransH [12], TransR [13], and TransD

[14]. Compared with TransE, these models embed entities and relationships into di↵er-

ent embedding spaces by using a distributed representation to separate the relationship

vector space from the entity vector space. In this way, the ability of the embedding

models to express complex relationships can be enhanced.

3
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Semantic Matching Models. Another important category of KG embedding models

is semantic matching models, which leverage similarity-based scoring functions to infer

relationship facts. RESCAL [15] and HolE [16] are two examples within this category,

which exploit tensor factorisation and represent relationships with matrices. DistMult

[17] simplifies RESCAL by forcing the relationship matrices to be diagonal matrices.

ComplEx [18] further extends DistMult with complex-valued embeddings in order to

model asymmetric relationships in a more e↵ective way. SimplE [19] also restricts rela-

tionship embeddings to diagonal matrices, but it extends DistMult by associating each

entity with two separate embeddings and each relationship with two separate diagonal

matrices so that the model is fully expressive and can model asymmetric relationships

well.

Deep Models. Deep models refer to models that use deep learning techniques for KG

embedding. These models combine the input data with learnable parameters to discover

significant patterns. ConvE [20] is one of the first models that employ convolutional neu-

ral networks (CNNs), which uses 2D convolution over embeddings and multiple layers

of non-linear features to model knowledge graphs. Recently, graph convolutional net-

works (GCNs) have also shown promising performance in many studies [21–23]. As an

extension of GCNs, R-GCN [24] has been proposed by Schlichtkrull et al., which ap-

plies GCNs to deal with highly multi-relational data characteristics of knowledge graphs.

Apart from CNNs and GCNs, recurrent neural networks (RNNs) has also been consid-

ered and studied by researchers. However, basic RNNs su↵er greatly from the limitation

that they do not explicitly handle the path alternation of entities and relationships.

RSN [25] is developed to tackle such issue, which e↵ectively bridges the gaps between

entities based on a skipping mechanism and combines RNNs with residual learning to

better capture the relational dependencies within and between KGs.

2.2 Knowledge Graph Entity Alignment

Entity alignment between knowledge graphs has been an active research area for many

years. With its prevalence in various applications, there has been an explosion of interest

in developing entity alignment approaches to enhance knowledge fusion. This section

provides a review of related literature on knowledge graph entity alignment approaches,

including conventional approaches and embedding-based approaches.

Conventional Entity Alignment. Conventional approaches deal with entity align-

ment problem from two main perspectives, namely equivalence reasoning [26, 27] and

similarity computation [28–30]. Some recent work improves the alignment accuracy by

using statistical machine learning [31, 32] and crowdsourcing [33]. However, it is worth
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noting that conventional approaches largely rely on literal information of entities and

require massive collaborative e↵orts. Although they can achieve high alignment accu-

racy, it cannot be ignored that they su↵er from extension inflexibility and high costs of

labour and time.

Embedding-based Entity Alignment. As mentioned in the previous section, recent

years have witnessed great advancements in the development of embedding models. Such

advancements motivate researchers to study and explore embedding-based entity align-

ment. Compared with conventional approaches, embedding-based approaches require

much less human involvement and can be scaled to large KGs more easily as a result.

Many existing approaches employ translational models (e.g., TransE [10]) for entity

alignment. Chen et al. propose MTransE, which adopts TransE to train knowledge

graphs in separated embedding space and develops an alignment model to construct

transitions between vector spaces [9]. IPTransE [34] encodes and unifies entities and

relations into a low-dimensional space before mapping the knowledge embeddings into

a joint semantic space and implementing an iterative method to improve its alignment

performance further. Similarly, BootEA [35] also iteratively adds the newly discovered

entity alignments to the training set during the optimisation process. Additionally, it

also employs an error correction mechanism to mitigate the impact of error accumula-

tion. Besides, some approaches, such as JAPE [36] and KDCoE [37], incorporate at-

tributes and description information into their algorithms in order to improve the entity

embeddings. Exploiting attribute values, Trisedya et al. propose an embedding-based

approach that integrates entity structure embedding with attribute character embedding

to improve the performance of entity alignment between two KGs [38].

Some recent approaches are developed based on graph neural networks (e.g., GCNs

[21]). For instance, Wang et al. present GCN-Align [1], which embeds entities from

each knowledge graph into a unified vector space and discovers entity alignment via

GCNs. Cao et al. introduce a Multi-channel Graph Neural Network model (MuGNN)

[2] to reconcile the structural di↵erences between di↵erent KGs and make better use

of the seed alignment at the same time. HGCN [39], another GCN-based approach,

approximates relationship representations using a small set of aligned entities before

incorporating them into entities to learn representations for both entities and relation-

ships iteratively. To better explore and capture complex relationship information in

multi-relational knowledge graphs, Wu et al. develop RDGCN [11], which incorporates

relationship information into entity representations by allowing multiple rounds of in-

teractions between the primal entity graph and corresponding dual relation graph. It

further extends GCNs with highway gates so that neighbourhood structural information

can be integrated.



Chapter 3

Preliminaries

A review of related literature in Chapter 2 highlights a number of important work

in the field of knowledge graph entity alignment. However, given the context of this

research project, we select three of them, namely MTransE, GCN-Align, and MuGNN,

to investigate by implementing a series of experiments and analysing their performances.

Before presenting a detailed discussion and analysis of the experiments, we first provide

some preliminaries in this chapter. We start with the problem definition (3.1), which

is followed by the explanation of two mainstream KG embedding models (3.2) and the

three KG entity alignment approaches (3.3).

3.1 Problem Definition

Knowledge graphs store knowledge of real-world entities in triples. A KG consists of

both relationship triples and attribute triples. Relationship triples represent the rela-

tionship between entities in the form of (subject entity, relationship, object entity), and

attribute triples represent attributes of entities in the form of (entity, attribute, value).

For instance, in Wikidata, (Albert Einstein, influenced, Leo Szilard) is a relationship

triple where influenced is the relationship between Albert Einstein and Leo Szilard, and

(Albert Einstein, date of birth, 1879-03-14) is an attribute triple where date of birth is

an attribute of Albert Einstein and 1879-03-14 is the attribute value. Both relationship

triples and attribute triples contain essential information about the entities.

Formally, we represent a knowledge graph as G = (E,R,A, Tr, Ta), where E, R, and

A are sets of entities, relationships, and attributes, respectively; Tr and Ta denote the

sets of relationship triples and attribute triples. Given two KGs G = (E,R,A, Tr, Ta)

and G0 = (E0, R0, A0, T 0
r, T

0
a), the task of entity alignment can be defined as discovering

6
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entities in G and G0 that represent the same real-world object. In many cases, a set of

pre-aligned entities As
e = {(e, e0) 2 E ⇥E0|e $ e0} and a set of pre-aligned relationships

As
r = {(r, r0) 2 R ⇥ R0|r $ r0} with $ representing equivalence, are known beforehand

as seed alignments and are used as training data.

3.2 Knowledge Graph Embedding Models

TransE [10] and GCN [21] are two mainstream models that are frequently used by various

entity alignment approaches to learn and generate the embeddings for entities. Here we

provide a brief description of these two models.

3.2.1 TransE

TransE is a typical triple-based embedding model that captures the local semantics of re-

lationship triples and aims to preserve the structural information of entities. Specifically,

it models relationships as translations operating on the low-dimensional representations

of the entities. Given a relationship triple (s, r, o), TransE suggests that the embedding

of the object entity o should be close to the embedding of the subject entity s plus

the embedding of the relationship r, i.e., s + r ⇡ o. Here bold-face letters denote the

corresponding vector representations. In this way, entities with similar neighbourhood

structures should have a closer representation in the embedding space. The energy of

the relationship triple is

�(s, r, o) = ||s+ r � o|| (3.1)

where || · || is the L1-Norm or L2-Norm of vectors. TransE minimises the margin-based

loss function by a pre-defined margin to separate positive triples from negative triples.

3.2.2 GCN

The graph convolutional network (GCN) is a type of neural networks that is well suited

for modelling graph-structured data. It operates on graph data directly and generates

node-level outputs by encoding the information about the neighbourhood of nodes. Con-

cretely, the inputs of a GCN include feature vectors of each node in the knowledge graph

and an adjacency matrix describing the graph structure, based on which the GCN aims

to learn a function of the features on the input graph and produce a new feature matrix

as the output. A GCN model normally consists of multiple stacked GCN layers, and the
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typical propagation rule from the lth layer to the (l + 1)th layer is

H
(l+1) = �

✓
D̃

� 1
2
ÃD̃

� 1
2
H

(l)
W

(l)

◆
(3.2)

where � is the activation function such as Tanh(·) and ReLU(·); Ã = A + I with A

being the adjacency matrix that represents the structural information of the graph and

I being the identity matrix; D̃ is the diagonal node degree matrix of Ã; W (l) is the

learnable weight matrix in the lth layer. H
(l+1) denotes a new feature matrix which is

the output from the lth layer.

3.3 Knowledge Graph Entity Alignment Approaches

In this section, we present a detailed review of the algorithm and framework of MTransE

[9], GCN-Align [1], and MuGNN [2] in order to lay a solid foundation for the experiments

and analysis in the next chapter.

3.3.1 MTransE

MTransE is a translation-based approach originally designed for multilingual entity

alignment. The idea of MTransE can be illustrated by Figure 3.1. It first adopts TransE

[10] to compute the embeddings for each KG. Then, it provides transitions for each em-

bedding vector to its counterparts in other spaces, while preserving the key properties

of each knowledge graph.

Figure 3.1: MTransE

MTransE consists of two components, namely the knowledge model and the alignment

model. Specifically, the knowledge model encodes entities and relationships of each

knowledge graph in a separated embedding space by using TransE. As for the alignment
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model, it aims to learn cross-lingual transitions from a set of pre-aligned relationship

triples. The loss function of the alignment model is

LA =
X

(Tr,T 0
r)2�(Li,Lj)

Sa(Tr, T
0
r) (3.3)

where (Tr, T 0
r) denotes an aligned relationship triple pair and �(Li, Lj) denotes the align-

ment set that contains the pre-aligned relationship triple pairs between language Li and

language Lj . MTransE considers three di↵erent techniques to compute the alignment

score Sa(Tr, T 0
r), including distance-based axis calibration, translation vectors, and linear

transformations. Out of these three techniques, deducing linear transformations between

the embedding spaces achieves the best performance and the corresponding alignment

score is

Sa = ||M e
ijs� s

0||+ ||M e
ijo� o

0|| (3.4)

with M
e
ij as the linear transformation on entity vectors from Li to Lj .

Combining the knowledge model and the alignment model, MTransE minimises the

overall loss function, which is the weighted sum of the two models’ loss. It is noteworthy

that negative sampling is not employed, since the authors did not find any noticeable

impact on the results of their experiments.

3.3.2 GCN-Align

GCN-Align is one of the first GNN-based approaches for knowledge graph alignment

problem, and its framework is presented in Figure 3.2. Given two KGs and a set of

pre-aligned entity pairs, it trains graph convolutional neural networks (GCNs) to embed

entities from the two KGs into a unified vector space and identify aligned entities based

on the distance between them.

Figure 3.2: GCN-Align [1]
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One of the key contributions of GCN-Align is that it e↵ectively combines entity relations

and entity attribute values to improve the results of KG alignment. To exploit both

structure and attribute information of entities, GCN-Align assigns two feature vectors,

including a structure vector and an attribute vector, to each entity in the GCN layers.

Then, the convolution computation is redefined as:

[H(l+1)
s ;H(l+1)

a ] = ReLU(D̃
� 1

2
ÃD̃

� 1
2 [H(l)

s W
(l)
s ;H(l)

a W
(l)
a ]) (3.5)

where H
(l)
s and H

(l)
a are structure and attribute feature matrices of all entities; W (l)

s

and W
(l)
a are weight matrices for structure features and attribute features respectively;

and [; ] denotes the concatenation of two matrices. Considering that KGs are directed

graphs with entities connected by di↵erent types of relations, it designs a special way of

computing A instead of directly using the adjacency matrix. Let aij 2 A indicate the

extent of alignment information propagating from the ith entity ei to the jth entity ej

in knowledge graph G. Then,

aij =
X

<ei,r,ej>2G
ifun(r) +

X

<ej ,r,ei>2G
fun(r) (3.6)

where fun(r) and ifun(r) are two measures proposed by the authors, namely func-

tionality and inverse functionality. Concretely, fun(r) and ifun(r) are the number of

subject entities and object entities of relationship r divided by the number of triples of

r, respectively.

As for entity alignments between KGs, they are predicted based on the distances between

the entities in the GCN representation space, where the distances are expected to be

small for equivalent entity pairs and large for non-equivalent pairs. A set of pre-aligned

entities is used as training data to embed equivalent entities as close as possible in

the representation space. The model is trained by minimising the margin-based loss

functions for structure embedding and attribute embedding separately.

3.3.3 MuGNN

Although GCN-Align achieves decent performance in entity alignment tasks, Cao et

al. point out the it fails to consider the structural di↵erences between the KGs [2]. To

reconcile the structural heterogeneity of KGs and make better use of the seed alignments,

they propose another GNN-based approach, MuGNN. As is shown in Figure 3.3, KG

completion and multi-channel graph neural network are two key steps of the MuGNN

framework.
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Figure 3.3: MuGNN [2]

KG completion aims to reconcile the structural di↵erences between KGs through rule

inference and transfer. It employs a popular rule mining system, AMIE+ [40], to induce

rules from each KG before transferring them between KGs based on the assumption

that knowledge can be generalised into di↵erent KGs regardless of domains. The rule

sets are then grounded on the corresponding KG for consistent completion. To better

illustrate the idea behind KG completion, here is an example. As we can see in Figure

3.4, the red dashed lines and ellipse in KG2 illustrates the structural di↵erences be-

tween the two KGs, making KG2 more informative than KG1. After obtaining the rule

(x, province, y) ^ (y, dialect, z) ) (x, dialect, z) from KG2, we can transfer it to KG1

based on the aligned relationships: province and dialect. In this case, a new relationship

triple (Jilin City, dialect,Northeastern Mandarin) can be derived.

Figure 3.4: Illustration of KG Completion in MuGNN (dashed lines and ellipse in red
denote the additional information in KG2) [2]

The main objective of multi-channel graph neural network is to encode each KG via

multiple channels. Specifically, it is comprised of three components, including relation

weighting, multi-channel GNN encoder, and align model. Relation weighting is designed

to generate weighted connectivity matrix which will be the input of GNN encoder. The
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model considers two types of structural di↵erences among di↵erent KGs: the missing

relationships due to the incompleteness nature of KGs and the exclusive entities due

to di↵erent construction demands of applications. These two types of di↵erences are

reconciled by using two channels of GNN encoder for each KG. As a result, two adjacency

matrices are generated for each KG: A1 based on KG self-attention and A2 based on

cross-KG attention. Following the graph attention networks [41], KG self-attention aims

to make better use of the seed alignments with aij in A1 defined as

aij = softmax(cij) =
exp(cij)P

ek2Nei[ei
exp(cik)

(3.7)

where ek 2 Nei [ {ei} refers to neighbours of ei with self-loop and cij refers to the

attention coe�cient. Regarding cross-KG completion, it aims to capture the common

subgraph of the two KGs and prune exclusive entities with aij in A2 defined as

aij = max
r2R,r02R0

1((ei, r, ej) 2 Tr)sim(r, r0) (3.8)

where 1(·) is 1 if holds true, else 0; sim(r, r0) is the inner product similarity between

relationship types. Given A1 and A2, the multi-channel GNN encoder is constructed

by stacking multiple GCN encoders:

MultiGNN(H l;A1,A2) = Pooling(H l+1
1 ,H l+1

2 ) (3.9)

where H
l+1
i denotes the node representations in the (l + 1)th layer and ith channel;

Pooling(·) refers to the average pooling techniques. Then, the align model embeds the

two KGs into a unified vector space using pre-aligned entities and relationships. Since

new triples are added during the rule grounding process, triple loss is also introduced

to hold the grounded rules as valid in the unified vector space. Hence, the model is

optimised using the margin-based loss function that consists of both alignment loss and

triple loss.



Chapter 4

Experiments and Analysis

In Chapter 4, we study and compare MTransE, GCN-Align, and MuGNN through four

exploratory experiments on two datasets. We begin by providing an overview of the

experiment settings and datasets used (4.1) before moving on to the four experiments,

focusing on the impact of seed alignments (4.2), e�ciency analysis (4.3), the impact of

attribute triples (4.4), and the impact of entity alignment on the internal semantics of

each KG (4.5), respectively. We end the chapter with a summary of the results and

findings from the experiments (4.6).

4.1 Overview

We start with a brief overview of the experiment settings. We use di↵erent sizes of

seed alignments as training data in Experiment 1 to compare the three approaches’

performances and investigate the impact of seed alignments. The maximum memory

usage of each approach is reported for e�ciency analysis in the second experiment. In

Experiment 3, we compare the three approaches with and without attribute triples. Ad-

ditionally, di↵erent ways of using attribute triples are explored and discussed. The last

experiment is about the e↵ect of entity alignment on each KG’s internal semantic, which

is measured by link prediction for translation-based approaches and node classification

for GNN-based approaches. For each experiment, we explain how it is designed and

executed and present the result with a detailed analysis.

As for the datasets used in the experiments, the entity alignment approaches are evalu-

ated on three publicly available knowledge graphs, namely DBpedia (DBP) [4], YAGO

[5], and Wikidata (WD) [6]. Specifically, we run the approaches to align entities from

13
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Table 4.1: Dataset Statistics

Dataset Entities Attributes Relationships
Attribute
Triples

Relationship
Triples

DBP-YAGO
DBP 58,858 85 126 173,520 87,676
YAGO 60,228 38 53 186,328 66,546

DBP-WD
DBP 84,911 257 288 221,591 203,502
WD 86,116 501 202 223,232 198,797

DBP with the ones from YAGO andWD, respectively. Then, the aligned entity pairs dis-

covered by the approaches are compared with the ground truth datasets 1, DBP-YAGO

and DBP-WD. DBP-YAGO contains 15,000 aligned entities, 43 aligned relationships,

and 29 aligned attributes; DBP-WD contains 50,000 aligned entities, 49 aligned rela-

tionships, and 28 aligned attributes. The statistics of the two datasets are included in

Table 4.1. It is worth noting that to better mirror the real-world challenges and di�cul-

ties regarding entity alignment between KGs, these two datasets are derived from the

existing benchmark datasets, DWY100K(DBP-YAGO) and DWY100K(DBP-WD) [35]

respectively, by removing 30% of the aligned entities from the knowledge graphs. We do

not directly use the existing benchmark datasets because the existing ones oversimplify

the entity alignment challenges under real-life scenario. For instance, in DWY100K,

entities are very densely connected to each other, and for every entity in the source KG,

we can always find exactly one counterpart in the target KG [42]. In this case, an entity

alignment approach can achieve decent performance by simply aligning each entity in

the source KG with the most similar one in the target KG. Further, in the real world,

KGs are created for a wide range of purposes and problem domains. As a result, they

contain entities that other KGs do not possess. By using datasets that are closer to

real-world settings, we aim to better compare and analyse each approach’s strengths

and weaknesses.

4.2 Experiment 1: Impact of Seed Alignments

Most of the existing approaches use 30% of the seed alignments as training data and

leave the rest 70% for testing. To have a better understanding of the three approaches

and their sensitivity to the usage of seed alignments, we compare their performance

using di↵erent sizes of seed alignments in Experiment 1.

1http://downloads.dbpedia.org/2016-10/links/
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4.2.1 Method

To investigate the impact of seed alignments on the three approaches, we use di↵erent

sizes of seed alignments as training data. Specifically, we gradually increase the size of

seed alignments from 10% to 50%. As for the evaluation metrics, by convention, the

performance of the entity alignment approaches is evaluated by Hits@N, which refers to

the proportion of correctly aligned entities ranked in the top N predictions. We report

Hits@1 and Hits@10 on each dataset. Higher Hits@N indicates better performance.

4.2.2 Results and Discussion

Figure 4.1 shows the result of Experiment 1. As we can see, all three approaches per-

form better as the size of seed alignments increases, which is in line with our intuition,

and a slower growth trend in their performances can be observed with 40% and 50% of

seed alignments. MuGNN consistently outperforms the other two approaches on both

datasets. Compared with the other GNN-based approach, GCN-Align, MuGNN explic-

itly completes knowledge graphs by mining, inferring, and transferring rules between the

two KGs to alleviate the negative impact of the heterogeneity of KG structures, which

has not been considered by GCN-Align. Additionally, although both GCN-Align and

MuGNN employ graph convolutional networks to encode KGs, MuGNN designs and

utilises multi-channel GNN encoders for di↵erent types of structural di↵erences to make

the most of seed alignments. Nonetheless, one advantage of GCN-Align over MuGNN is

that it harnesses both relationship triples and attribute triples, which proves to be an ef-

fective way to improve its performance. Apart from that, as rule inference and transfer is

the key step in the MuGNN framework, proper rule mining is essential. However, it can

be easily overlooked that rule mining might not work well on domain-specific datasets

where there are minimal number and types of relationships, and the entity alignment

performance might be compromised in this case. LinkedGeoData [43] and Geonames 2

are two examples of such datasets, which contain mainly geographical data with limited

number of location-related relationships. Moreover, while GCN-Align only needs a set

of pre-aligned entities as the training data, MuGNN requires a set of pre-aligned entities

and relationships. This indicates that the rule transfer might fail to work when there is

no aligned-relationship available, and the size of the detected rules will be much smaller

in KGs where the structure of KGs is sparser. It is also noteworthy that the inferred

rules do not hold in all cases. Thus, the confidence and quality of the rule grounding

process is of great importance to the overall performance of MuGNN, which has not

been carefully considered and discussed by the authors.

2http://www.geonames.org/ontology/
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On the other hand, the performance of MTransE is significantly worse than the other

two approaches, which can be analysed from several aspects. One important reason is

that MTransE embeds KGs using TransE, which is constrained by the assumption that

the embedding of the object entity should be close to the embedding of the subject en-

tity plus the embedding of the relationship. This is a strong assumption that can make

it ine�cient to deal with the complex KG structures and insu�cient to generate high-

quality entity embeddings. Also, it models the structure of KGs in separate embedding

spaces, which might result in more information loss during the transitions between the

embedding spaces. Besides, as mentioned in the previous chapter, MTransE removes

negative sampling during the training process, which is likely to cause overfitting as em-

beddings are trained only with positive samples. Since it jointly optimises the knowledge

model and alignment model, the overall loss function has to be balanced very carefully,

increasing the di�culty of generating promising results. Furthermore, compared with

GCN-Align and MuGNN, MTransE neither exploits attribute triples nor induces rules

from relationship triples for KG completion, which also explains its relatively inferior

results.

Figure 4.1: Experiment 1 Result: Impact of Seed Alignments

4.3 Experiment 2: E�ciency Analysis

To provide a more comprehensive evaluation, Experiment 2 aims to compare and analyse

the e�ciency of the three approaches by reporting their maximum memory usage on each

dataset.
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Table 4.2: Experiment 2 Result: Maximum Memory Usage

Approach MTransE GCN-Align MuGNN

Dataset
DBP-YAGO 0.41 GB 1.53 GB 17.82 GB
DBP-WD 0.50 GB 10.63 GB 34.00 GB

4.3.1 Method

All three approaches split 30% of the entity seed alignments as training data leaving

the rest for testing in the original papers. In this experiment, we hereby report the

maximum memory usage of the approaches on each dataset using 30% entity alignments

for training. We admit that di↵erent parameter settings, such as the learning rate

and the number of epochs, might impact the memory usage of di↵erent approaches.

Nevertheless, the main objective of this experiment is to present an overview of their

e�ciency by adopting the parameter settings reported in their original papers.

4.3.2 Results and Discussion

The result of Experiment 2 is listed in Table 4.2. As we can see from the results, due to

the more straightforward design of algorithms and more lightweight model complexity,

MTransE has the least maximummemory usage among the three approaches, followed by

GCN-Align. However, as discussed in the previous section, the performance of MTransE

is significantly worse than the other two approaches, especially on the DBP-YAGO

dataset. On the other hand, although MuGNN outperforms the other two approaches

in Experiment 1, Table 4.2 shows that it requires much more memory, especially on larger

datasets like DBP-WD. Although running MuGNN on GPU is an option provided by

the authors in their original code, it is worth mentioning that it cannot work in practice

due to the memory limitation and all experiments on MuGNN in this project have been

run on CPU as a result. Furthermore, along with the large memory usage, the time

cost of running experiments on MUGNN is also very high. For instance, MUGNN took

16 hours to generate results on the DBP-WD dataset, whereas GCN-Align only took 1

hour. Therefore, compared with MuGNN and MTransE, GCN-Align can be an e�cient

and e↵ective candidate to deal with large scale datasets. Last but not least, though only

three approaches are investigated in this project, the result of Experiment 2 still implies

that having high e�ciency on large-scale datasets while being able to achieve promising

performance can be a challenge for the state-of-the-art approaches.
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4.4 Experiment 3: Impact of Attribute Triples

Experiment 3 is designed as an exploratory experiment to explore and compare the e↵ect

of attribute triples on the performance of each approach.

4.4.1 Method

We compare the three approaches with and without attribute triples. Given that only

GCN-Align takes attribute triples into consideration in its framework whereas the other

two approaches are based on relationship triples only, here is how we design the exper-

iment. For MTransE and MuGNN, which originally only use relationship triples, we

take a simple exploitation method to treat the attribute triples as relationship triples.

For GCN-Align, which originally exploits attribute triples, we report the result of the

structure-only variant of GCN-Align, which only uses relationship triples to perform

structure embedding. Moreover, inspired by JAPE [36], for GCN-Align, we carry out an

additional experiment as an extension to compare two ways of using attribute triples:

one is using the original value of attributes, and the other is using attribute types by

categorising the attribute values into 4 data types, including String, Integer, Double,

and Date. Similar to Experiment 1, we report Hits@1 and Hits@10 on each dataset as

the evaluation metrics.

4.4.2 Results and Discussion

The results of Experiment 3 are shown in Figure 4.2 and Figure 4.3 with details included

in Table 4.3. Figure 4.2 indicates that considering attribute information can be a useful

way to improve the results of entity alignment in most cases. We start with a discussion

about the two relationship-based approaches, MTransE and MuGNN. As displayed in

Figure 4.2, a significant improvement in the performance of both approaches can be ob-

served on the DBP-YAGO dataset, where there is limited number of relationship triples.

This suggests that for approaches that only use relationship triples, a simple exploita-

tion method like treating attribute triples as relationship triples can be considered as

a way to enhance the overall performance when only a small number of relationship

triples are available. However, when we look at the result on the DBP-WD dataset,

the two approaches perform di↵erently. While there is a relatively smaller improvement

in MuGNN’s performance, the performance of MTransE is compromised with attribute

triples treated as relationship triples. For one thing, as the KG structures become more

complex and possess more relationship and attribute triples, TransE-based approaches

are prone to learn very similar embeddings for di↵erent entities [12, 13], resulting in the
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Table 4.3: Experiment 3 Result: Impact of Attribute Triples

Approach
DBP-YAGO DBP-WD

Hits@1 Hits@10 Hits@1 Hits@10
MTransE (w/o Attr) 0.07 0.81 8.69 27.15
MTransE (w/ Attr) 1.20 3.15 7.86 20.57
GCN-Align (w/o Attr) 18.74 47.11 21.29 42.33
GCN-Align (w/ Attr Types) 19.66 47.93 21.57 42.81
GCN-Align (w/ Attr Values) 22.50 51.37 22.59 45.07
MuGNN (w/o Attr) 27.20 64.80 23.41 53.51
MuGNN (w/ Attr) 60.46 78.19 33.05 55.41

deficiency in generating embeddings of high quality. For another, as discussed previ-

ously, MTransE does not employ the negative sampling technique that has been widely

used in a number of translation-based approaches and proved to be very valuable for

structure embeddings [35, 36, 44]. Only using positive samples in the training process

makes it prone to overfitting. This is more likely to happen when the method to exploit

of attribute triples is designed to be very simple. On the other hand, although simply

treating attribute triples as relationship triples can further improve MuGNN’s perfor-

mance on both datasets, it is worth noting that due to high computational costs and

model complexity, it might take even longer to complete the experiments. For instance,

it took six days to generate the results on the DBP-WD dataset, which, again, reflects

its e�ciency issue.

Figure 4.2: Experiment 3 Result: Impact of Attribute Triples

Regarding GCN-Align, which originally considers attribute triples in its algorithm, we

compare three variants of the approach: (1) GCN-Align without attribute triples, (2)

GCN-Align using attribute values, and (3) GCN-Align using attribute types. The re-

sult can be found in Figure 4.3. Overall, it validates the usefulness of the attribute

information as using either attribute values or types can achieve a better performance

than only performing structure embedding. When we have a closer look at the result

and compare the two ways of using attribute triples, GCN-Align using attribute types
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has a slightly better performance than GCN-Align with structure embedding only. By

contrast, GCN-Align using attribute values outperforms the other two variants, which

is also in accord with our intuition as it provides more attributional information than

using attribute types. However, it has to be admitted that exploiting attribute triples

by using attribute values requires a much larger vocabulary.

Figure 4.3: Experiment 3 Result: Comparison between Using Attribute Values and
Attribute Types on GCN-Align

4.5 Experiment 4: Impact of Entity Alignment on the In-

ternal Semantics of Each Knowledge Graph

To further evaluate and compare the three approaches, Experiment 4 aims to investigate

and analyse how each approach’s alignment model a↵ects the learning results of KG

embedding, i.e., the e↵ect of entity alignment on KGs internal semantics.

4.5.1 Method

The e↵ect of entity alignment on the internal semantics of each KG can be measured

by downstream applications. In this experiment, we follow two standard tasks: link

prediction for translation-based approaches [10] and node classification for GNN-based

approaches [21]. Link prediction is to predict the missing object entity given the subject

entity and the relationship. The evaluation protocol for link prediction can be explained

in two steps. In the first step, we corrupt each relationship triple by replacing its

object entity with all the other possible entities in the dataset. In the second step,

the corrupted triples are ranked in ascending order based on the plausibility score (s+

r � o). In this case, valid triples are expected to have smaller plausibility scores than
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Table 4.4: Experiment 4 Result: Impact of Entity Alignment on KGs Internal Se-
mantic

Approach
MTransE GCN-Align MuGNN

Link Prediction Node Classification Node Classification
(Hits@10) (Precision) (Precision)

Dataset
DBP-YAGO 98.03 78.12 43.75
DBP-WD 84.23 66.87 51.14

invalid ones. Following the convention, we use Hits@10 as the evaluation metric for

the link prediction task. As for node classification, it aims to classify the nodes and

determine their labels based on the labelled nodes in their neighbourhood. Under the

current experiment setting, it means given the embedding of an entity, we train a simple

classifier to predict the corresponding entity type. Specifically, we employ a support

vector classifier and evaluate it using two-fold cross-validation. We report the percentage

of correctly classified entities for the node classification task.

4.5.2 Results and Discussion

The result of Experiment 4 is included in Table 4.4. Ideally, entity alignment approaches

are expected to achieve good alignment performance while being able to preserve the

internal representation of KGs. Nonetheless, it is understandable that better perfor-

mances in entity alignment might compromise the internal semantics of each KG. This

is also indicated by the result of this experiment. Specifically, compared with MTransE

and GCN-Align, MuGNN is more alignment-oriented, which is clearly reflected by the

idea and framework behind the approach. As discussed previously, one of the critical

objectives of MuGNN is to reconcile the structural di↵erences between KGs. It explicitly

completes KGs through rule inference and transfer and prunes exclusive entities through

specially designed relation weighting schemes. As a result, new triples are added, and

the structure of each KG is changed, which explains its relatively inferior result in this

experiment. On the other hand, MTransE strikingly outperforms the other two ap-

proaches in Experiment 4, which is in accord with one of the original intentions stated

by the authors. That is, to preserve the essential properties and characterisation of

each KG well. However, given its performance in Experiment 1, it also implies that,

in MTransE, the internal representation of each KG is preserved ”too well” to address

the entity alignment problem between KGs e↵ectively. This might be caused by an im-

balance between the loss of the knowledge model and the alignment model during the

joint optimisation process. In general, the result of Experiment 4 reveals that designing

a proper alignment model that can achieve good performance in entity alignment and

preserve the internal semantics of each KG at the same time remains a challenge for

future work.



Chapter 4 Experiments and Analysis 22

Table 4.5: Comparison of Three Approaches

MTransE GCN-Align MuGNN
Embedding Model Translation-based GNN-based GNN-based
Alignment Model Transition Margin-based Margin-based
Usage of Attribute

Triples
7 3 7

Distance Measure Euclidean Distance Manhattan Distance Cosine Similarity

Pros
1) Simple and scalable
2) Key properties of each
KG preserved

1) Scalable and e↵ective
2) Attribute triples exploited
to improve accuracy

1) Outperformance over the other
two approaches
2) Structure heterogeneity of KGs
carefully considered
3)Further improvement with simple
exploitation of attribute triples

Cons

1) Significant degradation in
performance under real-life
challenges
2) Prone to overfitting
3) Limited by the TransE-based
embedding model

1) Structure heterogeneity of
KGs not carefully considered
2) A very large vocabulary
required

1) Less scalable and e�cient
2) Degradation in performance
when there are no/few rules
3) Pre-aligned relationships required

4.6 Comparison and Summary

In this section, we summarise the key findings in the experiments and provide an overall

comparison of the three entity alignment approaches (see Table 4.5).

Previous literature shows that MTransE is a simple and scalable approach that works

well on most existing benchmark datasets. However, we observe a significant degradation

in its performance in our experiments. The limitations of TransE-based embedding

models and the absence of the negative sampling technique are two important reasons.

There is no doubt that TransE is one of the most frequently used KG embedding models

in many existing entity alignment approaches. Yet, as discussed in Chapter 2, there

are many unexplored KG embedding models for the entity alignment problem, such as

TransH [12], HolE [16], and ConvE [20]. This highlights a potential research direction

that is worth further exploration.

Compared with MTransE, GNN-based approaches achieve better and more robust per-

formance. Specifically, MuGNN outperforms the other two approaches by employing

rule inference and transfer and using multi-channel GNN encoder to reconcile structural

di↵erences between KGs for better alignment performance. Although it originally does

not consider attribute triples, a simple exploitation method by treating attribute triples

as relationship triples further improves its performance. This not only validates the

usefulness of attribute triples, but also points out a direction for future work to propose

approaches that e↵ectively leverage attribute triples. Nevertheless, the limitations of

MuGNN cannot be ignored. For one thing, pre-aligned relationships between the KGs

required by MuGNN might not always be available. Additionally, the performance of

the approach greatly relies on the quality of the rule mining, inference, and transfer
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process, which requires careful consideration and further investigation. For another,

due to its high computational costs and model complexity, e�ciency analysis reveals its

scalability issue on datasets of a large scale. In this case, GCN-Align can be an e�cient

and e↵ective candidate for entity alignment on larger datasets. With that said, how to

develop algorithms that can e�ciently achieve competitive alignment performance re-

mains a research question to be answered by future work. Furthermore, the result of the

experiment on how the alignment model of each approach a↵ects the internal semantics

of KGs provides motivations for future studies to design and propose proper alignment

method that can preserve the internal representation of each KG while having promising

alignment performance.



Chapter 5

Conclusion and Future Directions

In Chapter 5, we draw conclusions (5.1) and propose future directions (5.2).

5.1 Conclusion

Entity alignment aims to identify equivalent entities from di↵erent knowledge graphs,

which is a prevalent approach to integrating knowledge from di↵erent KGs for better

knowledge fusion and inferences. While entity alignment for knowledge graphs has

seen vigorous development and become an active research area in recent years, there

have been very few experimental studies to explore, compare, analyse, and discuss the

state-of-the-art approaches. With such observations, this project provides an empirical

evaluation of three state-of-the-art entity alignment approaches by thoroughly reviewing

the algorithm and framework of each approach, carrying out exploratory experiments

to compare their strengths and weaknesses, and presenting evidence-based analysis and

discussions in detail.

5.2 Future Directions

Based on the experimental results and findings, we propose several future research di-

rections in this section, including both the extensions to the current experimental study

and suggestions for future work on entity alignment algorithms.

24
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5.2.1 Extensions to the Current Experimental Study

Variety of State-of-the-Art Algorithms. Given the current research project’s con-

text and time limit, only three entity alignment algorithms are investigated and dis-

cussed. However, a review of related literature in Chapter 2 shows considerable e↵orts

in this research field. Thus, it is of significance to include a wider variety of state-of-the-

art algorithms and categorise them based on their core techniques and characteristics so

that the comparison and analysis would be more comprehensive and meaningful.

Similarity on the Top K Alignment. It would be interesting to compute the vector

similarity and see the similarity on the top K alignments to analyse the similarity mea-

sure performed by di↵erent methods. Additionally, the confidence of the alignments can

be compared via similarity@1 for further analysis.

Attribute Semantics. For methods that exploit attribute triples, it is also worth

investigating and comparing how each method leverages attribute triples. Specifically, we

could compute the semantic similarity of the attribute embedding and plot the attributes

in a 2D plane to show whether the same attributes, such as person name and date of

birth, are clustered together or not.

5.2.2 Suggestions for Future Work on Entity Alignment

Unsupervised Entity Alignment. As discussed in Chapter 4, seed alignments are

required as supervision by most existing entity alignment approaches. However, it can be

di�cult and costly to meet this requirement in the real world. Moreover, it is vulnerable

to the quality of the selected entity pairs. Therefore, one important and meaningful

research direction is to study and develop unsupervised entity alignment approaches.

Leveraging supplementary resources to distil distant supervision such as pre-trained word

embedding can be a possible solution [45]. In addition, recent research by Conneau et

al. on unsupervised cross-lingual word alignment highlights that orthogonal Procrustes

[46] and adversarial training [47] are also worth exploring [48]. Besides, active learning

[49] and abductive learning [50] can be two potential ways to reduce the cost and burden

of data labelling.

Scalability of Entity Alignment. The experiments and e�ciency analysis in the

previous chapter reveal that training and testing the existing methods on larger datasets

require much more memory and time, which climb polynomially along with the increasing

number of entities. In this case, it is very challenging and costly for embedding-based

methods to run on very large knowledge graphs. Hence, another opportunity for future

work is to explore ways to improve the scalability of entity alignment approaches. Some
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hashing techniques, such as Locality-Sensitive Hashing [51] and Information Network

Hashing based on Matrix Factorization (INH-MF) [52], might be useful to alleviate the

scalability issue.

Multi-modal Entity Alignment. Information associated with each entity can be in

various modalities, including texts, images, or even videos, which potentially add another

dimension to the development of entity alignment approaches [53, 54]. Due to the fact

that only very few studies have attempted to describe and integrate the multi-modal

data for entity alignment problems, how to e↵ectively and e�ciently exploit multi-modal

knowledge is another research question that remains to be answered in the future.

Entity Alignment in the Real World. As discussed previously, current entity align-

ment approaches work well under the assumption that every entity in one knowledge

graph has a counterpart in another knowledge graph. However, this is not the real-world

setting since knowledge graphs are created for di↵erent purposes and unmatchable en-

tities always exist. Furthermore, only a few entities are densely connected to others

in the real-life knowledge graphs, whereas the rest have a very sparse neighbourhood

structure. This has also been oversimplified or even neglected by current literature.

Therefore, developing entity alignment algorithms suitable for real-world setting is an-

other challenge for future work. Using more advanced graph neural networks, leveraging

additional features such as taxonomies, and extracting information from the open Web

to enrich entities are potential directions to investigate [21, 24, 55].
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[18] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
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core for a web of spatial open data. Semantic Web, 3(4):333–354, 2012.

https://hal-imt.archives-ouvertes.fr/hal-01699866


Bibliography 31

[44] Patrick Klein, Simone Paolo Ponzetto, and Goran Glavaš. Improving neural knowl-
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